skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Young, Ben"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The specific goals of this project were to (1) investigate the rate and timing of temperature-dependent in situ biological production of carbon monoxide and methane in an Arctic ice core, (2) develop records of atmospheric carbon monoxide and methane spanning recent centuries, and (3) determine the roles that ice impurities may play in any observed in situ gas production. The collection and analysis of a ~150 meter (m) long ice core from Summit Station, Greenland in 2023 was used for these investigations and analysis of the ice core was conducted both in the field and in the Ice Core Laboratory at the Desert Research Institute (Reno, NV). This ice core was drilled within Summit Station near the cargo line, so ice deposited after camp establishment in the late 1980s was not analyzed because of contamination. 
    more » « less
  2. Free, publicly-accessible full text available January 2, 2026
  3. We present new measurements of methane (CH4), nitrogen isotopes (d15N-N2), and total air content (TAC) from the North Greenland Eemian Ice Drilling (NEEM), North Greenland Ice Core Project (NGRIP), and Greenland Ice Sheet Project Two (GISP2) Greenland ice cores from the Last Glacial Maximum through the late Holocene (0 to ~18 thousand years before present [ka BP]). These records provide insight into spatial pattern of Greenland climate evolution across the deglaciation and the Holocene Thermal Maximum. The methane data allow for gas-phase synchronization of ice cores across Greenland and Antarctica, providing empirical delta age reconstructions. The nitrogen isotopic composition data allow for reconstruction of abrupt Greenland surface climate variations, which is provided for all 3 sites. Data are a combination of measurements conducted at Oregon State University, Scripps Institution of Oceanography, and the National Institute for Polar Research using previously established techniques. 
    more » « less
  4. Abstract Holocene temperature evolution remains poorly understood. Proxies in the early and mid‐Holocene suggest a Holocene Thermal Maximum (HTM) where temperatures exceed the pre‐industrial, whereas climate models generally simulate monotonic warming. This discrepancy may reflect proxy seasonality biases or errors in climate model internal feedbacks or dynamics. Using seasonally unbiased ice core reconstructions at NEEM, NGRIP, and Greenland Ice Sheet Project 2, we identify a Greenland HTM of ∼2°C above pre‐industrial, in agreement with other Northern Hemisphere proxy reconstructions. The firn‐based reconstructions are verified through borehole thermometry, producing a multi‐core, multi‐proxy reconstruction of Greenland climate from the last glacial to pre‐industrial. HTM timing across Greenland is heterogenous, occurring earlier at high elevations. Total air content measurements suggest a temperature contribution from elevation changes; regional oceanographic conditions, a weakened polar lapse rate, or variable near‐surface inversions may also be important sensitivities. Our reconstructions support climate simulations with dynamic Holocene vegetation, highlighting the importance of vegetation feedbacks. 
    more » « less
  5. null (Ed.)